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Abstract

Multimodal Emotion Recognition in Conversations (ERC)
aims to identify the emotions conveyed by each utterance in
a conversational video. Current efforts encounter challenges
in balancing intra- and inter-speaker context dependencies
when tackling intra-modal interactions. This balance is vi-
tal as it encompasses modeling self-dependency (emotional
inertia) where speakers’ own emotions affect them and mod-
eling interpersonal dependencies (empathy) where counter-
parts’ emotions influence a speaker. Furthermore, challenges
arise in addressing cross-modal interactions that involve con-
tent with conflicting emotions across different modalities. To
address this issue, we introduce an adaptive interactive graph
network (IGN) called AdalGN that employs the Gumbel
Softmax trick to adaptively select nodes and edges, enhanc-
ing intra- and cross-modal interactions. Unlike undirected
graphs, we use a directed IGN to prevent future utterances
from impacting the current one. Next, we propose Node-
and Edge-level Selection Policies (NESP) to guide node and
edge selection, along with a Graph-Level Selection Policy
(GSP) to integrate the utterance representation from original
IGN and NESP-enhanced IGN. Moreover, we design a task-
specific loss function that prioritizes text modality and intra-
speaker context selection. To reduce computational complex-
ity, we use pre-defined pseudo labels through self-supervised
methods to mask unnecessary utterance nodes for selection.
Experimental results show that AdalGN outperforms state-
of-the-art methods on two popular datasets. Our code will be
available at https://github.com/TuGengs/AdalGN.

Introduction

Emotion recognition in conversations (ERC) has garnered
considerable attention due to its valuable applications in rec-
ommendation systems (Zheng et al. 2022), dialogue gener-
ation (Zhu et al. 2022), and so on. Most studies on ERC
focus primarily on the textual modality, including recurrent
neural networks (RNNs) (Majumder et al. 2019), memory
networks (Jiao, Lyu, and King 2020), and graph-based mod-
els (Saxena, Huang, and Kurohashi 2022).

Despite the progress, text alone cannot provide sufficient
cues for deeper feelings compared to multimodal percep-
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Joey Rachel

(#1 What’s the matter? (Neutral) ]

{ # 2 Nothing. (Neutral)
(#3 What is it? Hey! (Sadness))

[# 4 Really it’s nothing. I’m just (Sadness)] \

Empathy

(#5 Rach come on, what? (Neutral) )
. [#

Figure 1: Examples of utterances in a conversation. The
golden labels of utterances are highlighted in red font.

# 6 I’ve just been thinking about how my baby
and I are gonna be all alone. (Sadness)

7 What are you talking about alone?
What about Ross? (Surprise)

BNIdU] [BUOnOwW

8 Oh please, hell be with his real family, the
twins and little miss new boobs. (Sadness)

)

tion (Hazarika et al. 2018). Existing multimodal ERC meth-
ods mainly focus on aggregation-based fusion by concate-
nation (Tu et al. 2022b), tensor product (Mai, Hu, and Xing
2019; Liu et al. 2018), attention network (Rahman et al.
2020; Wang et al. 2019) or heterogeneous graph (Yang et al.
2021; Hu et al. 2022), etc. For instance, Hazarika et al.
(2018) proposed a conversational memory network to align
features from multiple views. Lian, Liu, and Tao (2021) in-
troduced a cross-modal transformer for implicit enhance-
ment. Hu et al. (2021) explored undirected graph-based fu-
sion to capture intra- and cross-modal interactions.
However, they have limitations in modeling intra- and
cross-modal interactions: (1) Future utterances affecting
the emotion detection of the current one. Previous ap-
proaches in modeling intra-modal interactions have often re-
lied on using future utterances to predict the current one’s
emotion. However, this approach is not practical in real-
world situations. (2) The difficulty of balancing empa-
thy and emotional inertia. Emotional dynamics of conver-
sations (Poria et al. 2019) covers two main aspects: self-
dependency (emotional inertia), where a speaker’s own emo-
tions impact them, and interpersonal dependencies (empa-
thy), where a speaker’s emotions are influenced by their
counterparts. Striking the right balance between empathy
and emotional inertia poses a significant challenge in mod-
eling intra-modal interactions. This balance fundamentally
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involves harmonizing inter- and intra-speaker contexts. As
depicted in Fig. 1, discerning the emotion behind Utterance
8 necessitates assigning greater significance to intra-speaker
context (Utterances 4, 6, etc.) rather than inter-speaker con-
text (Utterances 5, 7, etc.). Unfortunately, previous stud-
ies have overlooked the balance between these two con-
texts. (3) Multimodal information involves content with
conflicting emotions. When modeling cross-modal interac-
tions, certain utterances exhibit conflicting emotions across
different modalities. As illustrated in Fig. 1, the 2nd utter-
ance visually conveys sadness through tear wiping, while the
text itself appears devoid of emotion. Existing research has
yet to offer a solution for such discrepancies.

To address the above problems, we present a novel adap-
tive interactive graph network (IGN), called AdaIGN, which
is guided by Node- and Edge-level Selection Policies (NSP
and ESP, collectively known as NESP) as well as a Graph-
level Selection Policy (GSP). IGN is a directed graph to
prevent future utterances from affecting the current one. To
jointly optimize these policies with network weights, we
employ standard back-propagation along with the Gumbel
Softmax trick (Jang, Gu, and Poole 2016). Specifically, the
NSP is employed to select nodes across multiple modalities
within an utterance. The ESP is capable of selecting distinct
contextual edges (including inter- and intra-speaker con-
texts) of each node within the same modality. The GSP inte-
grates the two graphs by selecting utterance representations
at the graph level. Furthermore, we introduce a task-specific
loss function based on the keep-or-drop strategy, prioritizing
the selection of text modality and intra-speaker context to
meet the ERC task. To reduce computational complexity, we
leverage pseudo labels generated via self-supervised meth-
ods to mask unnecessary utterance nodes for selection and
freeze the gradient of their corresponding selection strate-
gies. In summary, our contributions are as follows:

e We propose a novel AdalGN that enhances intra- and
cross-modal interactions by dynamically selecting nodes
or edges. And the task-specific loss function based on the
keep-or-drop strategies is designed to meet the ERC task.
To optimize the computational complexity of selection
policies, we employ predefined pseudo-labels to mask
out utterances that do not require selection.
Experimental results on two popular ERC datasets show
that our AdalGN outperforms state-of-the-art methods.

Methodology

In this section, we provide a detailed introduction to each
component of the proposed AdalGN, as depicted in Fig. 2.

Task Definition

LetU = [u(y), ..., u(n)] be a conversation uttered by M > 2
speakers, consisting of N utterances. Each utterance u ;) is
represented by a triplet u(;) = {u‘(lz.), Uy, u’zz)} uf;) € Rda,
ufy € R4, and u@.) € R% denote the acoustic, visual, and
text features of u(;), respectively. Multimodal ERC aims to

predict the emotion label e(;) of each utterance u; based on
its historical utterances u;) where Vj < i.
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Feature Representation

Following (Ghosal et al. 2020a), we employ layer normal-
ization and average operation on the last four hidden layers
of the Roberta Large model (Liu et al. 2019) to obtain tex-
tual features. For extracting acoustic and visual features, we
utilize OpenSmile (Schuller et al. 2011), an audio feature ex-
traction toolkit, and a pre-trained DenseNet model (Huang
et al. 2017) as per previous works (Hu et al. 2022).

Utterance-level Encoder

To capture context information and handle the inconsistent
dimensions in multimodal data, we use a bi-directional GRU
(BiGRU) GRU,, € R%*% for text modality and a fully
connected layer F¢ € R9*da/v for acoustic and visual
modalities, to map the feature sequence u?i) of each modal-

ity n € {a, v, t} to a fixed-size representation m?i) € R,
méi% hzi) = SRUm(uf”, hfifl)) (1
mfi) = f{(ufi)‘ 95)7 £ €{a,v} @)

where h‘éi) is the hidden state. F* assigns separate pa-
rameters 05 for acoustic and visual modalities. Consider-
ing the significance of speakers in ERC (Ong et al. 2022),
we employ another BiGRU G RU,, € R4 *da/v/t to capture
speaker-specific features s?i) € R4, as follows:

il = miy + s ®
Sty By = SRUP(U?Z.>,EZ]]€) ), 1<k <4, @)

where h?k) is the hidden state of the k-th utterance spoken

by the same speaker as in the ¢-th utterance. A7 is a manually
set hyperparameter that indicates the weight of the speaker
information for each modality. 87(72.) € R is the speaker-
specific features for speaker. GRU, € Rénxda/v/t isused to
integrate speaker information.

Adaptive Interactive Graph Network

Graph Structure We suggest a multimodal directed graph
network G; = {va, 04, P4, P} to ensure that the predic-
tion of the current utterance is not influenced by future ut-
terances. PY and PY denotes a set of NSP and ESP. And we
also build another graph network G, = {v,,0,}. v,/q and 04
represent a set of graph nodes and edges, respectively. G, /g
comprises 3 x /N nodes for a conversation, with 7’7\17(71,) € R

represented by three nodes of the i-th utterance. Intra- and
cross-modal interactions are modeled using a set of edges
d,/q that follow two rules: (1) Nodes from the same modal-
ity are connected in a conversation, and (2) Three nodes
from different modalities are connected in an utterance. The
weight between nodes ¢ and j, denoted by W("L ne Vi < 7,
is calculated using the cosine similarity function sim(.) as
1 — arccos(sim(my.,, my.\))/m.
@ 770G)

Node- and Edge-level Selection Policies To achieve NSP
and ESP, we designed a binary random variable Q(VC/)O €

RN*2 for each node and its corresponding edges. Specifi-
cally, QE’O € P} and 9?{) € ’Pg determine whether the node



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)
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Adaptive Interactive Graph Network
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Figure 2: [lustration of AdaIGN framework during the training phase. Mathematical symbols in the illustration are in line with
the formulas in paper text. Unselected nodes and edges mean their probability of being selected is less than 0.5, but they still
have the potential to retain more than 0.5 after GSP. For example, the probability of NSP for a node is 0.3, while the probability
of GSP for G is 0.6 and for G, is 0.4. So 58% (0.3 x 0.6 4+ 0.4 x 1) node information is retained.

and edges of the (-th utterance are selected. With ESP, we
divide the context into self- and inter-speaker categories, al-
lowing Pg to select which category of contexts. Instead of
manually adjusting these selection policies, we use standard
back-propagation to jointly learn the network weights 6 and
73;/ 2, However, optimizing the non-differentiable policies
is challenging. To overcome this problem, we adopt Gumbel
Softmax Sampling (Jang, Gu, and Poole 2016).

Gumbel Softmax Sampling Let IT =[r(y), 7(2), ..., T(n)]
be a set of distribution vectors of the binary random variable
7 € [0,1] in a conversation, where 7(¢) = [1 — (), V(o)) €

R?. In Gumbel Softmax Sampling, instead of directly sam-
pling I' ¢y from 7(¢), we generate it as follows.

L [k] = Argmaz () [x] + log(m¢)[K])) ®)

where k€ {0,1}. 1) = —log(—log(v())) € R% And
V() € R? are independent and identically distributed sam-

ples drawn from the Uni f (0, 1) distribution. To remove the
non-differentiable Argmax operation, the Gumbel Softmax
trick relaxes & (T'(¢)) to V¢ € R?. &, denotes the one-hot
encoding to the non-differentiable results.

exp((log(m¢)[k]) + ) [K]) /)
Doy exp((log(m(o) [K]) + o) [K])/7)

where k € {0,1}. 7 > 0 is the temperature parameter.
Especially, when 7 — 0, )y becomes the same as &, (I'¢))
and the corresponding Gumbel Softmax distribution of V()
becomes identical to the discrete distribution 7).

Vo lkl = (6)

Selection Policies Based on the above, we can assign an
attribute value Q¥ = [Q(Vl), ey Q(”N)], which represents a

set of distribution vectors of the binary random variable
7 € [0,1] to each node v in Ga. 0(y = [1 = (), ¥(¢)] and

(¢ indicates the probability of the (-th nodes being selected

in G4. During the training process, we employ Gumbel Soft-
max Sampling to generate the QE’C) as follows.

exp((log (e [K]) + (o [K])/7)
ENG{OJ} eXp((IOg(Q(VQ []) + Wg) [])/7)

o(o[k] = ©)
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where o [0] and ) [1] are mutually exclusive, so the
value of of) can only be [0,1] or [1,0] during testing. For

ESP, we can add another attribute value O° to generate the
policy Q ) € Po.o [ 0] and g‘(so [1] indicate the probability
of selectlng inter- and intra-speaker contexts, respectively.

Pseudo Labels Because of a large number of nodes and
edges, training each policy individually leads to high com-
putational complexity. To address this, we use pseudo-labels
to identify policies that do not need to be trained.

(1) We train a new graph @ using two modalities, such
as a and ¢ and compared its prediction results against those
of the G,. Utterances with the same prediction results are la-
beled as M ASK", while M AS K is obtained using a simi-
lar method. We omit M ASK* as modality ¢ already exhibits
superior performance in ERC (Wu et al. 2021).

(2) We remove intra-modal edges of the same modality
(e.g., v) in G¢ and then compare predictions to the origi-
nal G,. Utterances with the same predictions are labeled as

MASK ", with ESP set to [1,1] for a probability of 1 for
both intra- and inter-speaker context selection.
After the above steps, we initialize NSP and ESP:

[0,1], CEMASK"

Q(C n) — {Gumbel Softmaz(O Z/C))’ otherwise ®)
[1,1], CGMASK
Q(C n) {Gumbel Softmaz(O (54))’ otherwise (9)

where 7 € {a,v,t}. The representations of node and edge
weights are updated as follows:

WUO(@“ mD pi==p;

— " v =

Vay =V © (0Gi,m[1]) W, { (S, ) (0], otherwise (10)
where o denotes the elementwise multiplication operator. v
refers to the nodes corresponding to the i-th utterance for n
modality. ¢ and j are the two nodes connected by an edge.

During the testing process, o(;[0] or ¢{;,[1] is determined
by whether it is greater than 0.5, and similarly for in) [0] or

,in) [1]. It can take on either 1 or 0 based on this condition.
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Graph Convolution Operation According to (Chen et al.
2020), the graph convolution operation of G4/, in a mini-

batch data as follows:

HY =1 - a)PH" Y 4 aH” (11)

HY =1 -T@-1))E+T0 - Wi (12)

H), = oc(HOHS) (13)

where P = D~Y/2AD~1/2 ¢ R3da%3dq g the graph con-

volution matrix with the renormalization trick (Kipf and
Welling 2016) for three modalities, where D € R3dqx3dq g
the degree matrix of A. d, denotes the maximum sequence
length of the minibatch data. A € R34s*3da ig the adja-
cency matrix of Gz/,. € € R3daX34 is the identity matrix,
which represents the connection relationship between nodes.
HO) ¢ R3dax3dm s initialized with T?L"Wm,n € {a,v,t}.

W, € R3dr*3dm g 3 trainable parameter. "H, / € R3dax3dq

is the output of the I-th layer and T'({) = log(4 7) + 1. cand

f3 are two hyperparameters. Wy € R34m*3dm ig the weight
matrix for the (I — 1)-th layer. o(.) denotes the ReLU acti-
vation function (Agarap 2018).

IGN with GSP  To avoid the high dimensionality resulting
from concatenating the two representations in G, and G4, we
utilize the GSP similar to NSP and ESP by setting a policy
09 € R?, which is also a binary random variable and adap-

tively selects between the ’HS) and 'HEl) to obtain the final
utterance representation H () € RV*3m at the graph level.

Emotion Classifier
We utilize a linear unit to predict the emotion distributions:

ey = Argmax(Softmax(W. Xy + be)) (14)
Xo=mls" e Ve H e /) (5)

where & denotes the concatenation operation. W, €
R x(Bdnt3dm) and b, € R are trainable parameters
where d,, is the number of categories of emotions. 7—[ 77 e
R? represents the i-th utterance representation after the
stack of [ layers for modality 7. € € R is the predict-

ing emotional label set of utterances in a conversation. The
graph learning of AdalGN is performed by minimizing £:

L= Lce + ’yﬁ'm + WLIC + ¢£d + M£n (]6)
keeping dropping
Lce = CrossEntropy(e, e) + < |0, (17)

where O is a set of projection parameters. ¢ represents
the coefficient of Ly-regularization. L., is the classification
loss. v, ¢, w, p are hyperparameters that determine the con-
tribution of each component to L. These four loss items are
mainly used to lay constraints on selection policy learning
based on the keep-or-drop strategy.

Keeping Loss The loss terms £,,, and £ are components
of the keeping loss. Minimizing L, encourages the selection
of text modalities and intra-speaker context edges for each
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modality. Minimizing £,,, encourages the selection of the
other two modalities and the original graph G,.

N —n
»Cm :ZnSN N
v g
- de{w} Do log(eln, o [0]) + log(?[0])

‘Q(y'"a a) [1} - QI(J'n, v) [1] |

(18)

N-—-n v v
L= oy Domen N 10001 = olu o)1)
+ 2y 0(eln, )
N —n
+ Znﬁe*{aavﬂt} ZnSN N
F 2 oty Dy 1080 0D, 1 # 7

& 5
b, 1] = oo, 1]

19)

where the sum of O, ) € R?, Q(n m € R?, and Q( m € R?

isall 1. (1[0 and gf;, ,[1] denotes the probablllty of un-
selecting and selecting the 1 modality of the n-th utterance.
g?n (1] and Q?n . [0] represents the probability of select-
ing contexts of the n-th utterance, belonging to the same and
different speakers within the modality 7. ¢9]0] and p?[1] de-
notes the probability of selecting G, and G.

Dropping Loss By minimizing the dropping loss L4 and
L, the policies run counter to the keeping loss £,,, and Ly,
respectively. To meet the ERC task, it is necessary for v to be
smaller than w in the keeping loss. Similarly, in the dropping

loss, 1 should be smaller than ¢. Furthermore, both v and ¢
need to be smaller than w and p, respectively, as well.

La=3 "oy Do 1080, o [1]) +log(e” (1) 20)

o=,y oslet oD+ og(e{n, ) [11))
@21)

€{a,v,t}

Experiments
Datasets

We benchmark AdalGN on two well-known conversational
datasets: IEMOCAP (Busso et al. 2008) is a dataset of in-
teractive emotional binary motion capture recordings with
ten actors in dialogues. It has 151 dialogues, and 7433 ut-
terances, each labeled with six emotions: neutral, happy, an-
ary, sad, excited, and frustrated. MELD (Poria et al. 2018)
has multi-party conversation videos from the Friends TV se-
ries, with 1,433 conversations, 13,708 utterances, and 304
speakers. Utterances are labeled with emotions: anger, dis-
gust, sadness, joy, surprise, fear, or neutral, and sentiment:
positive, negative, or neutral. The data split of datasets in
Table 1 is as follows (Ghosal et al. 2020a).

Experimental Settings

We perform a hyperparameter search for AdalGN on each
dataset using the validation set. The learning rates is 3e-4
for IEMOCAP and le-3 for MELD. We train our model us-
ing a batch size of 32 conversations with Adam optimizers.
NESP and GSP are randomly initialized for policy initial-
ization. For policy learning, we employ an Adam optimizer
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Dataset Dialogues Utterances Classes
train val test train  val test
MELD 1039 114 280 9,989 1,109 2610 7
IEMOCAP 120 31 5,810 1,623 6

Table 1: Statistics of two datasets. As the IEMOCAP dataset
does not come with a predefined train/validation split, we
allocate 10% of the training dialogues for validation.

with a learning rate of 2e-2. For other hyperparameters, d,, is
1582 for IEMOCAP and 300 for MELD. d, =342, d;=1024,
dp=200, and d,,=100. v=0.6, $=0.2, w=0.9, and p=0.1. \"
is 3 (a), 0 (v), and 1 (t) for IEMOCAP; and 0.5 (a), 0.5 (v),
and 1.5 (t) for MELD. The number of GCN layers [ is 16 for
IEMOCAP and 32 for MELD. The selection policy distri-
bution size is set to 200 * batch size, where 200 is the max
sequence length. All experiments are conducted at a single
Tesla V100s-PCIE-32GB GPU. The results reported in our
experiments are averages of 5 random runs on the test set.

Baselines

Aggregation-based Fusion DialogueRNN (Majumder
et al. 2019) utilizes three GRUs to track speaker states and
context, while DialogueGCN (Ghosal et al. 2019) tackles
context propagation through a graph network; both use con-
catenated multimodal features. CTNet (Zhang et al. 2020)
utilizes a transformer-based structure to model inter- and
intra-modal interaction. SCMM (Yang et al. 2023) combines
context modeling, modal interaction, and self-adaptive path
selection for enhanced multi-modal representation.

Graph-based Fusion MMDFN (Hu et al. 2022) utilizes a
multimodal graph with a uniform structure to represent rela-
tionships between modalities. MMGCN (Hu et al. 2021) em-
ploys a graph-based fusion module for capturing both intra-
and inter-modal contextual features. CMCF-SRNet (Zhang
and Li 2023) is a framework combining cross-modal interac-
tion through a locality-constrained transformer and enhanc-
ing semantic relationships between utterances using a graph-
based refinement transformer.

Overall Results

Following (Zhang and Li 2023; Chudasama et al. 2022; Hu
etal. 2021), we utilize weighted F1 scores as evaluation met-
rics for ERC models and we also report F1 scores per class,
except for Fear and Disgust classes on MELD due to insuf-
ficient training samples for statistically significant results.
Table 2 presents the results of the comparison be-
tween AdalGN and other baseline methods. Our proposed
AdalGN demonstrates superior performance over previous
approaches in terms of the weighted F1 score, establishing a
new state-of-the-art benchmark. As depicted in Table 3, the
exclusion of multiple selection policies from AdalGN leads
to a dynamic decrease of 3.86% and 2.76% in the F1 score
on the IEMOCAP and MELD datasets respectively. This
reduction serves as compelling evidence for the effective-
ness of integrating multiple selection policies. Furthermore,
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AdalGN achieves remarkable enhancements compared to al-
ternative graph-based models. Specifically, on the MELD
dataset, AdalGN surpasses the CMCF-SRNet model, show-
casing a substantial improvement of 4.49% in the weighted
F1 score. A similar positive trend is observed on the [IEMO-
CAP dataset, further reinforcing the efficacy of employing
multiple selection policies for the ERC task.

Analysis of Various Modalities and Contexts

Table 3 presents the experimental results of IGN with differ-
ent modalities and contexts removed, highlighting the im-
portance of using multimodal data for ERC. Removing the
textual modality led to significant F1 score drops of 19.63%
and 20.36% on the IEMOCAP and MELD datasets, respec-
tively, in line with previous research findings (Wu et al.
2021). Additionally, the impact of intra-speaker context on
ERC performance was found to be greater than inter-speaker
context (Ghosal et al. 2020a). Hence, task-specific loss items
were included in selection policies to prioritize selecting the
textual modality and self-speaker context, while avoiding
pseudo-label annotation for the text modality.

Analysis of Emotional Conflicts

To calculate the ratio of utterances displaying emotional
conflict issues, we train the IGN solely using unimodality
data as input. Subsequently, we generate three sets of pre-
dictions for each modality. Inconsistencies observed among
pairwise predictions indicate conflicts among these modali-
ties. The conflict ratios in the IEMOCAP dataset are 83.73%
for VA (acoustic-visual) modality, 50.71% for AT (acoustic-
text) modality, and 77.45% for VT (visual-text) modality.
Turning to the MELD dataset, conflict ratios within the
VA, AT, and VT modalities are determined to be 27.32%,
43.60%, and 47.20% respectively, emphasizing the signifi-
cant and valuable nature of exploring selection policies.

Ablation Study

In this section, we analyze the impact of various components
within AdalGN. Ablation experiments in Table 4 demon-
strate that all components of AdalGN have significantly im-
proved results. This is further supported by the statistical
analysis, where the p-value < is 0.05 for the paired t-test.

Analysis of Selection Policies As shown in Table 4, the
removal of selection policies leads to a decrease in the over-
all performance of the model. Experimental results on the
IEMOCAP dataset demonstrate a reduction in accuracy of
2.41%, 2.28%, and 1.68%, and a decrease in F1 score of
2.72%, 2.60%, and 2.00% when NSP, ESP, and GSP are not
utilized. This decrease in performance underscores the sig-
nificance of these selection policies in enabling the model
to dynamically select positive information. Moreover, we
noted that NSP yielded the most favorable results, highlight-
ing the effectiveness of the model in handling utterances in-
volving emotional conflicts across various modalities.

Analysis of Loss Items Table 4 indicates that incorporat-
ing any loss item leads to an improvement in the F1 score.
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Methods IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated w-F1 | Neutral Surprise Sadness Happy Anger w-Fl
DialogueRNN* 3220 8026 57.89 6282 73.87 59.76  62.89 | 76.97 47.69 2041 5092 4552 57.66
DialogueGCN*  51.57 8048 57.69 5395 7281 57.33 62.89 | 75.97 46.05 19.60  51.20 40.83 56.36
CTNet* 51.30 7990 6580 6720 78.70 58.80  67.00 | 77.40  52.70 3250  56.00 44.60 60.50
MMGCN # 45.14 77.16 6436 68.82 74.71 61.40  66.26 | 76.33 48.15 26.74  53.02 46.09 58.31
MMDEN 4222 7898 6642 69.77 75.56 66.33 68.18 | 77.76  50.69 2293 5478 47.82 59.46
SCMM° 4537 78.76 63.54 66.05 76.70 66.18 67.53 - - - - - 59.44
CMCF-SRNet” 5220 80.90 68.80 70.30 76.70 61.60  69.60 - - - - - 62.30
AdalGN (ours) 53.04 81.47 71.26 6587 76.34 67.79 7074 | 79.75  60.53 43.70  64.54 56.15 66.79

Table 2: Comparison Results under the multimodal setting (acoustic, visual, and textual modalities). w-F1 denotes the weighted
average F1 score. #, %, and ” results come from (Hu et al. 2022), (Lian, Liu, and Tao 2021), and original papers, respectively.

Methods IEMOCAP MELD
IGN (Ours) 66.88 64.03
w/o A 65.97 63.15
w/o V 66.10 63.68
w/o T 47.25 43.67
w/o intra-speaker context 65.64 62.94
w/o inter-speaker context 66.32 63.75

Table 3: Analysis of IGN on various modalities and contexts.
A, V, and T denote acoustic, visual, and textual modalities.

Methods IEMOCAP MELD
Acc w-F1 Acc w-F1
AdalGN (Ours) 70.49 70.74 67.62 66.79
w/o Ly 66.99 67.16 65.44 64.37
w/o L, 68.08 68.37 66.81 65.76
w/o L4 67.42 67.64 66.59 65.08
w/o Ly, 68.23 68.44 66.97 66.09
w/o NSP 68.08 68.02 66.02 64.57
w/o ESP 68.21 68.14 66.40 64.96
w/o GSP 68.81 68.74 66.55 65.39

Table 4: Ablation results of AdalGN.

Specifically, adding L, (selection of text modality and intra-
speaker context) and £, (unselection of acoustic and visual
modalities) results in a significant F1 score improvement of
3.58% and 3.10% on the IEMOCAP dataset and 2.42% and
1.71% on the MELD dataset, respectively, underscoring the
effectiveness of the keep-or-drop strategy for the ERC task.

Additionally, we visualize the performance of AdalGN
across varying weights for keeping and dropping loss, as il-
lustrated in Fig. 3. With a fixed v, as u increases, the model’s
performance improves steadily until reaching its peak, after
which it starts to decline. When +y is less than y, leading to
a collapse in the model’s performance. Similar phenomena
are also observable in w and ¢, emphasizing the importance
of selecting text modality and intra-speaker context.
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Figure 3: Performance of AdalGN on the validation set of
the IEMOCAP dataset under different loss weights.
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Figure 4: Numbers of selection policies that require training
and non-training on the IEMOCAP dataset.

Analysis of Pseudo-labels

To address the problem of high computational complexity in
training individual policies, pseudo-labels have been utilized
to eliminate non-training policies. The results presented in
Fig. 4 exhibit the number of selection policies that require
training versus non-training ones (indicated by ‘mask’). A
considerable decrease is observed in the count of policies
needing training, proving the significance of pseudo-labels
in reducing the computational complexity of NESP.

Case Study

Unlike the training phase, the weight of selection policies
is either 1 or O during testing. We extract mini-batch data
with a weight of 1 on the GSP from the IEMOCAP dataset
for the case study as shown in Fig. 5. In the 2-nd utterance,
although the woman appears happy, the emotion labeled is
neutral. Therefore, it is reasonable for the NSP to unselect
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Utterances

#2 what? (Neutral)

#3 1did it, I asked her to marry me. (Excited)

#4 Yes, I did it. (Excited),

"
ol

' #5 When? (Excited)

|

#6_Oh my god, it was just last weekend. (Excited

#7_Oh, what, how- where how did you do it? (Excited

#8 She--,well, she said yes, first of all, let me say that
right off the bat. Well, I would like to assume, too.
But you never know these things, right? (Ha )

(#9_Okay good. 11

(Excited))

#10 oh- (Happy)

o

v
No context due to unselected nodes

Acoustic, visual, text nodes No meaning
Unselected nodes

Intra-speaker context under acoustic, visual, text modality 1

pmm———————

Inter-speaker context under acoustic, visual, text modality }
Figure 5: Visualization of selection policies during the test
phase. The 1st utterance lacks context, and the 2nd utterance
lacks intra-speaker context, rendering ESP meaningless.

the visual modality information. In the 5-th utterance, the
woman empathizes with this man because of utterances 1, 3,
and 4. Thus the ESP introduces a more inter-speaker context
for visual modality data because they are the most effective
for recognizing the emotion ‘excited’. For the 8-th utterance,
the model prioritizes the most original features (the output
of the utterance-level encoder). This is likely because the
utterance contains substantial, distinctive content that offers
ample information for accurate emotion analysis.

Error Analysis

After conducting an error analysis per dataset, we discov-
ered that the majority of errors can be attributed to the prob-
lem of class imbalance. Specifically, the ‘fear’ emotion had
only 268 samples while ‘neutral’ had 4710, leading to an F1
score for ‘fear’ as low as 15.15 in the MELD dataset. Addi-
tionally, we focus on the issue of emotional shifts, where two
consecutive utterances exhibit different emotions. Existing
methods struggled with addressing emotional shifts (Shen
et al. 2021b). Our AdalGN faces similar challenges, as ev-
ident in Table 5, performing comparably worse on samples
with emotional shifts compared to those without.

Related Work

Context Modeling in ERC Contextual information in ERC
provides significant clues for emotion analysis, as evidenced

19095

Methods IEMOCAP MELD
Acc w-F1 Acc w-F1
AdalGN 70.49 70.74 67.62 66.79
w/ Emotion Shift 58.76 58.83 61.27 59.40
w/o Emotion Shift 75.74 75.93 76.91 77.63

Table 5: Analysis of AdalGN on Emotional Shifts.

by (Tu et al. 2023b). Unlike vanilla sentence-level emo-
tion analysis, the ERC model requires modeling context-
and speaker-sensitive dependencies (Tu et al. 2022a), in-
cluding recurrent-based network (Majumder et al. 2019; Hu,
Wei, and Huai 2021; Li et al. 2022), transformer-based net-
work (Lian, Liu, and Tao 2021; Shen et al. 2021a; Jiang et al.
2022), and graph-based network (Ghosal et al. 2020b; Shen
et al. 2021b; Tu et al. 2023a). However, modeling contexts
among different modalities remains a significant challenge.
Recent research efforts (Kang and Kong 2022; Hu et al.
2021; Lian et al. 2023) have explored the modeling of intra-
and cross-modal interactions within a graph framework. De-
spite progress in ERC, these methods have not yet effec-
tively tackled the essential need to balance inter- and intra-
speaker contextual dependencies, striking a balance between
empathy and emotional inertia.

Multimodal Fusion Multimodal fusion aims to combine in-
formation from different modalities through feature, deci-
sion, and model-level fusion strategies. Feature-level fusion
involves concatenating multimodal features into a joint fea-
ture vector at the input level (Jiang et al. 2023), but it faces
data sparseness due to high-dimensional feature sets (Wu,
Lin, and Wei 2014). Decision-level fusion combines uni-
modal decision values through voting (Morvant, Habrard,
and Ayache 2014), averaging (Shutova, Kiela, and Maillard
2016), or weighted sum (Glodek et al. 2011), but overlooks
correlations between modalities. Model-level fusion, a mid-
dle ground, fuses intermediate representations of different
modalities (Hsu et al. 2023). Recently, researchers have ex-
plored graph-based fusion to capture intra- and inter-modal
interactive information (Hu et al. 2021, 2022; Yang et al.
2023). However, these graph structures predict emotions us-
ing future utterances, which is impractical in real-world sce-
narios. Furthermore, they face limitations in handling con-
tent with conflicting emotions across different modalities.

Conclusion

In this paper, we propose a novel adaptive IGN termed
AdalGN, that learns a selection pattern for nodes and edges
in a multimodal heterogeneous graph. This selection pro-
cess is guided by our proposed selection policies NSP and
ESP. These policies prioritize selecting the text modality and
intra-speaker context to meet the ERC task. Furthermore, we
introduce GSP to integrate the utterance representation from
the original IGN and NESP-enhanced IGN. To mitigate the
computational complexity of policy learning, we leverage
pseudo-labels to mask unnecessary utterance nodes for se-
lection. Experimental results show that our method outper-
forms state-of-the-art methods on two well-known datasets.
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